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Abstract
Quantum mechanical coupling and strain in two vertically arranged InP/InGaP
quantum dots is studied as a function of the size of the dots and the spacer
thickness. The strain distribution is determined by the continuum mechanical
model, while the single-band effective-mass equation and the multiband k · p
theory are employed to compute the conduction and valence band energy levels,
respectively. The exciton states are obtained from an exact diagonalization
approach, and we also compute the oscillator strength for recombination. We
found that the light holes are confined by strain to the spacer, which is the reason
that the hole states exhibit coupling at much larger distances as compared with
the electrons. At small d , the doublet structure of the hole energy levels arises as
a consequence of the relocation of the light hole from the matrix to the regions
located outside the stack, close to the dot–matrix interface. When d varies, the
exciton ground state exhibits numerous anticrossings with other states, which
are related to the changing spatial localization of the hole as a function of d . The
oscillator strength of the exciton recombination is strongly reduced in a certain
range of spacer thicknesses, which effectively turns a bright exciton state into
a dark one. This effect is associated with anticrossings between exciton energy
levels.

1. Introduction

The Stranski–Krastanov mode of epitaxial growth enables quantum dots to self-assemble in
vertical stacks [1, 2], where the wavefunctions of the individual dots overlap as in molecules;
therefore they are named quantum-dot molecules (QDMs). According to the simple view
of coupling, the energy levels of two vertically coupled dots split into doublets, which are
composed of bonding and antibonding counterparts. In order to model a quantum-dot device,
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Figure 1. A sketch of a quantum-dot molecule (QDM) composed
of two stacked InP dots (indicated by the dark areas) of radius R and
thickness h, symmetrically arranged with respect to the z = 0 plane,
and separated by an InGaP spacer of thickness d. The simulation
area is given by the large (dashed) cylinder.

e.g. a laser, optical amplifier, or photonic detector, the coupling between electrons and holes
should be properly accounted for. In addition to the band offset and effective masses, the
size and shape of a quantum dot should be accurately known. However, the epitaxial growth
technique has not reached a level which enables the fabrication of identical islands throughout
the whole semiconductor matrix, and consequently there are substantial fluctuations in size
and shape of the dots.

In contrast to the case for etched quantum-dot molecules, which are formed from
lattice matched semiconductors, strain is inherently present in self-assembled quantum dots
(SAQDs) [3, 4], which makes the requirements on modelling more demanding. In a previous
paper [5] we showed that for single quantum dots (SQDs) the continuum mechanical (CM)
model for strain captures the essential physics. Furthermore, this approach is most convenient
when continuum models for the electronic structure are subsequently used. Indeed, we recently
compared different models for cylindrical quantum dots, and found that the strain extracted
from the CM model agrees favourably with the results from the valence force field model (using
the Keating potential), and also with calculations based on Stillinger–Weber potentials [6]. In
quantum dots based on low energy gap semiconductors, InAs for example, band mixing should
also be taken into account, which leads one to adopt, e.g., the multiband k · p approach [7–9].
For the wide band-gap InP quantum dots embedded in a InGaP matrix, the six-band k · p
model for the valence band states suffices, and the electron states are accurately described by a
single-band model. A close comparison between the six-band and eight-band models does not
reveal appreciable mixing between the valence and the conduction band states in InP/InGaP
quantum dots. Another advantage of the six-band approach is that it does not suffer from
spurious solutions, which are inherently present in the eight-band k · p model [10, 11].

Even the simple view that the strain in a quantum-dot molecule is built up from a
superposition of the strains of the two dots separately indicates that the light holes are
responsible for the hole coupling. In previous papers we showed that in a single quantum
dot, the strain changes when the dot thickness varies, which leads to angular momentum
transitions of the hole ground state [5, 6]. Similar changes are found here in QDMs, but now
as a function of the spacer thickness.

In the present paper, we study the quantum-dot molecule composed of two InP quantum
discs positioned one above the other and embedded in an InGaP matrix, as shown in figure 1.
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Table 1. Envelope angular momenta (in units of h̄) of the envelope functions in the S±
+3/2, S±

+1/2,

and P±
+5/2 states.

un0 S±
+3/2 S±

+1/2 P±
+5/2

|3/2, 3/2〉 0 −1 1
|3/2, 1/2〉 1 0 2
|1/2, 1/2〉 1 0 2
|3/2, −3/2〉 3 2 4
|3/2, −1/2〉 2 1 3
|1/2, −1/2〉 2 1 3

For simplicity, we assume the same size for the two dots. The artificial molecule system is
studied as a function of the spacer thickness and we investigate how energy levels split. The
coupling due to strain is compared with the quantum mechanical coupling. Our theory is based
on the CM model for the strain, the single-band effective-mass equation for the conduction
band, and the six-band k · p Hamiltonian for the valence bands [5]. The spatial localization
of the holes as a function of the spacer thickness is investigated, and the influence of the
relocation of the electrons and holes due to the localization of an exciton is explored. The
exciton states are obtained from an exact diagonalization calculation, where the products of
the single electron and hole envelope functions are used as the basis. We exploit the multiband
model, to find the dependence of the composition of the wavefunction on the spacer thickness,
and also to ascertain how the optical activity of the exciton depends on the localization, and in
turn on the distribution of strain.

In section 2, the model for computing the exciton states is described. The calculation of
the exciton oscillator strength is explained in section 3. The numerical results are given in
section 4. Section 5 contains our conclusions and the summary.

2. The model of exciton states

We assume that the quantum-dot molecule is composed of disc-shaped quantum dots and
therefore the parity along the direction perpendicular to the two discs is a good quantum
number in the axially symmetric approach to the electronic structure for both electrons and
holes [12]. The single-particle states are determined following the procedure described in [5].
The electron states are labelled by nlσe , where n denotes the principal quantum number, le is the
orbital momentum of the electron, and σ is the parity of the state. Similarly, for the case of the
hole states we use the symbol nXσ

fh
, where X denotes the lowest absolute value of the envelope

angular momentum lh for the six hole basis states, fh is the total angular momentum of the hole
in units of h̄ (Fzh = fhh̄), and the other symbols have similar meanings to those for the electron
case. For holes we find Kramers degeneracy with respect to reversal of both parity and total
angular momentum. As an example, we give in table 1 the envelope angular momenta in the
valence band (vb) states S±

+3/2, S±
+1/2, and P±

+5/2, while the parities of the envelope functions in
the even and odd states are given in table 2. The envelope functions are labelled by the periodic
parts of the zone centre Bloch functions un0 [5]. We refer further to the vb states as the hole
states, keeping in mind that the Hamiltonian is written for the electrons in the valence bands,
with the energy axis pointing from the valence bands upwards to the conduction band. When
calculating exciton states, the phases of these envelope functions are appropriately taken into
account [13].

The contribution of the different bands to the mixed hole state is given by

pvb =
∫

�

(|Fi |2 + |Fj |2) d�, (1)
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Table 2. Parities of the envelope functions in the even (X+
fh

) and odd (X−
fh

) states.

un0 X+
fh

X−
fh

|3/2, 3/2〉 + −
|3/2, 1/2〉 − +
|1/2, 1/2〉 − +
|3/2, −3/2〉 − +
|3/2, −1/2〉 + −
|1/2, −1/2〉 + −

which is a measure of the coupling between the different hole states. In equation (1), vb is
a symbol used for the hole band (with hh for heavy holes, lh for light holes, and so for the
split-off band), while Fi and Fj denote the two envelope functions belonging to the specific
band. Integration in equation (1) is performed over the domain (ρ � Rt , |z| � Hz), shown in
figure 1.

Each function in the exciton envelope function spinor Fexc,s is expanded in products of
single-electron and single-hole wavefunctions,

Fexc,s(re, rh) =




Fs,1

Fs,2

Fs,3

Fs,4

Fs,5

Fs,6




=
∑

m

∑
n

amn




Fhm1

Fhm2

Fhm3

Fhm4

Fhm5

Fhm6




Fen,s, (2)

which is written for the given electron spin s, amn are the coefficients of expansion, while Fen,s

and Fhmi are the single-electron and single-hole envelope functions. Expansion in equation (2)
yields the secular equation

(Een − Ehm − Eexc)δimδkn +
∑

m

∑
n

6∑
j=1

〈Fhi j Fek |VC |Fhmj Fen〉 = 0, (3)

where Een and Ehm denote the single-particle electron and hole energies and δ is the Kronecker
symbol. Since all four envelope functions which are involved in the Coulomb matrix have
a well defined parity, which is not removed by the Coulomb potential, each exciton state is
formed from the single-electron and single-hole states of either equal parity or opposite parity,
which will be named even and odd excitons, respectively. Hence, the exciton parity σexc is a
good quantum number for the axially symmetric exciton, while the total angular momentum
is composed of the angular momenta of the electron and the hole,

Fzexc = (s + le)h̄ − Fzh, (4)

and is also conserved. Here, sh̄ denotes the electron spin, which is included in the symbol of
the exciton state, nXσexc

fexcs , where the meanings of the other symbols are similar to the ones for
the holes case. Since Fzexc depends on the electron spin, the states with fexc and − fexc are
not degenerate. But overall the exciton states have fourfold degeneracy, which arises from the
double degeneracy of both the electron and the hole, and thus the exciton states are arranged
in quartets. As demonstrated below, each quartet in the SQD splits into two quartets in the
QDM composed of states of equal fexc and s, but opposite parity. As an example,

Q−
1 = [ S−

−1↑ S+
+2↑ S+

+1↓ S−
−2↓ ] , (5)

is a quartet composed of the dark exciton states, but in the quartet

Q+
1 = [

S+
−1↑(x,y) S−

+2↑ S−
+1↓(x,y) S+

−2↓
]
, (6)
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two states are optically active for x or y polarized light. In the following, states with a non-zero
oscillator strength for exciton recombination are indicated by lines over the symbol of the state,
with the subscript indicating the polarization of the absorbed light. The optical activity in Q+

1
and Q−

1 is determined by the selection rules for the orbital momenta, and the selection rule for
the parity, as elaborated above. The subscript 1 is chosen because 1Q+

1 is the ground state for
all three values of the disc thickness. A higher energy is found for the Q+

2 quartet:

Q+
2 = [ S+

0↑ S−
+1↑ S+

−1↓ S−
0↓ ] , (7)

which is dark, while the quartet

Q−
2 = [

S−
0↑(z) S+

+1↑(x,y) S−
−1↓(x,y) S+

0↓(z)

]
(8)

contains excitons which are bright for arbitrary light polarization. However, population of
the quartet 1Q−

2 in the single quantum dot is considerably reduced by its higher energy with
respect to the 1Q+

1 quartet.
In order to explore the exciton localization, the six-dimensional space of the coordinates

of the exciton is projected onto a two-dimensional one, by averaging the modulus squared of
the exciton spinor at re = rh = r over the polar angle:

|Fexc,s |22D = 1

2π

∫ 2π

0
F†

exc,s(r, r)Fexc,s(r, r) dϕ. (9)

The subspace re = rh = r is relevant for the oscillator strength of exciton recombination, and
will be called the two-dimensional exciton probability density (2DPD). Also, the contributions
of different hole bands in the exciton states are extracted from the exciton envelope functions
Fs,i and Fs, j , which belong to the band vb:

pvb,exc =
∫

�

(|Fs,i (r, r)|2 + |Fs, j (r, r)|2) d�, (10)

as in equation (1).

3. Oscillator strength

As a figure of merit for the recombination of an exciton, we use the oscillator strength,

f = 2

m0 Eexc
|Mexc|2, (11)

where Eexc denotes the recombination energy, m0 is the free-electron mass, and Mexc is the
transition matrix element:

Mexc =
∫

re,rh

ε · ph�̃exc dre drh, (12)

where the integration is performed over the electron and hole coordinates, ε denotes the
polarization vector, and �̃exc is the wavefunction composed of the vb electron envelope
functions, which are directly extracted from our k · p Hamiltonian [5], and the conjugate
complex of the cb electron envelope functions. ph acts only on the vb zone centre periodic
parts of the Bloch functions. We compute Mexc by expanding it in the single-electron transition
matrix elements:

Mexc =
∑

m

∑
n

amn Mvc,mn, (13)

where Mvc,mn denotes the transition matrix element connecting the m and n single-electron
states in the valence and the conduction band, respectively. In the framework of the envelope
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function approach, Mvc,mn is resolved into the dipole matrix elements connecting the zone
centre states, and the overlap integrals of the envelope functions:

Mvc,mn =
6∑

j=1

〈S|ε · ph|u j〉〈Fcn |Fvmj 〉. (14)

The selection rule 〈S|ph,ν |ν ′〉 = (im0 P/h̄)δν,ν′ , where ν denotes x , y, or z, and P is the Kane
matrix element (taken to be equal in the dot and the matrix), applies to the envelope function
overlap integrals. Therefore, overlaps between vb and cb envelope functions depend on the
polarization of the incident light and the electron spin. For the hole Hamiltonian and the
ordering of the zone centre states given in [5], the coupling coefficients are arranged in distinct
sets:

(x,↑):
[ 1√

2
, 0, 0, 0, 1√

6
, 1√

3

]
(15a)

(x,↓):
[

0, 1√
6
, 1√

3
, − 1√

2
, 0, 0

]
(15b)

(y,↑):
[ i√

2
, 0, 0, 0, − i√

6
, − i√

3

]
(15c)

(y,↓):
[

0, i√
6
, i√

3
, i√

2
, 0, 0

]
(15d)

(z,↑):
[

0, − 2√
6
, 1√

3
, 0, 0, 0

]
(15e)

(z,↓):
[

0, 0, 0, 0, 2√
6
, − 1√

3

]
(15f)

where the electron spin and the polarization are explicitly declared in parentheses ahead of
each coefficient set.

In the axially symmetric system, the envelope functions obey additional selection rules,
which discard overlap integrals of envelope functions corresponding to different orbital
momenta. For a given fh of the vb electron, transitions to the cb states are only allowed
if

fh − 3
2 � le � fh + 3

2 . (16)

Because of this rule, for example, P+5/2 vb states cannot transfer to the electron states in the
s shell. The third restriction results from arguments based on parity, which prevents envelope
functions of the opposite parity from forming finite overlap integrals. Since exciton states are
composed of single-particle states, all three selection rules should affect the optical response
of excitons as well.

4. Results and discussion

We apply our model to the InP/InGaP quantum-dot molecule, composed of two identical
quantum discs, which have radius R = 8 nm, and we varied the thickness: h = 2, 3, and
4 nm. The thickness of the InGaP spacer d between the two vertically arranged discs is varied
from 0 to 15 nm. The valence band offset was taken as −45 meV [7]; other parameters of
InP and InGaP are given in table 1 of [5], except for the Kane energy, EP = 2m0 P2/h̄2, for
which we took 20.7 eV for InP, as recently proposed in [14]. The strain distribution in the
cylinder of radius Rt = 30 nm and height 2Hz = 80 nm, shown in figure 1, was calculated.
The same domain is used to expand the electron, hole, and exciton envelope functions. The
single-particle envelope functions are expanded into products of 10 Bessel functions in the
radial direction and 50 sine or cosine functions along the z coordinate. The choice of sine or
cosine functions depends on the parity of the states and the symmetry of the matrix element
in the Pikus–Bir Hamiltonian. For the exciton states, we select 320 pairs of electron and hole
states with low values of the principal quantum number. The electron orbital momentum is
limited to |le| < 2, while | fh| < 9/2 for the hole.
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Figure 2. The effective potentials for the electrons (a), heavy holes (b), and light holes (c) in the
SQD (solid curves) are compared with those in the QDM for a 2 nm (dashed curve) and for a 10 nm
thick spacer (dotted curve) along the z axis. The dot radius equals 8 nm, the disc thickness is 3 nm,
and the energy axis is oriented upwards in all bands.

4.1. Strain and effective potentials

The variations of the effective potentials in the conduction band, the heavy hole band, and the
light hole band along the z coordinate in the QDM are shown in figures 2(a)–(c). One may note
that for d = 10 nm, the hydrostatic strains within the individual dots are screened from each
other (see figure 2(a)). For the 2 nm thick spacer, however, the cb effective potential inside the
two dots acquires a triangular shape. Strain decreases the hh effective potential energies, when
the inter-dot spacing decreases. For the light holes, however, the effective potential barriers
inside the dots are decreased by the action of strain, while the regions formed inside the spacer
and in the matrix near the base of the stack localize the light holes rather efficiently when d
decreases.

The dot centre value of the cb effective potential is displayed in the upper portion of
figure 3(a). For thin spacers, the maximum of the cb effective potential is located at z = 0,
but when the dot separation increases, the z = 0 value decreases, and for the spacers as thick
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Figure 3. (a) The effective potential in the conduction band in the centre of the QDM, i.e. at
(ρ = 0, z = 0), is shown by the dashed curve in the upper part, while the solid curve in the
lower part displays the minimum of the same effective potential. (b) The maxima of the effective
potentials in the QDM for the heavy holes (solid curve) and the light holes (dashed curve). The
two curves cross, which indicates that holes in the ground state will have a dominant heavy (light)
hole character for thick (thin) spacers. (c) The minima of the effective potentials for the heavy
holes (solid curve) and the light holes (dashed curve) as they vary with the spacer thickness in the
QDM. The dot thickness amounts to 3 nm.

as 10 nm shown in figure 2(a), it becomes lower than the value of the effective potential at
the dot–matrix interface. The lowest value of the cb effective potential energy, also shown in
figure 3(a), exhibits initially a steep decrease, but becomes almost flat for d > 8.5 nm, which
implies that the hydrostatic strain inside one dot is completely screened from the strain in the
other dot for large values of d . The vb extrema are depicted in figures 3(b) and (c). Note that
the maxima of the hh and lh bands show opposite trends as a function of spacer thickness,
which results in a crossing at 6.6 nm. Hence, for d < 6.6 nm one may anticipate dominant lh
confinement, while in the opposite case, hh confinement may prevail. The minima of the hh
and the lh bands, displayed in figure 3(c), vary such that the separation between them increases
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from about 100 meV for thin spacers to more than 150 meV for thick spacers, which also
enhances the hh character of the ground hole state when the spacer becomes thicker.

4.2. Electron and hole states

The electron energy levels in the QDM are ordered in doublet shells. The lowest energy
doublets in the s±, p±, and d± shells are shown in figures 4(a)–(c), for h = 2, 3, and 4 nm,
respectively. The shaded areas represent the energy continuum, and the thin horizontal lines
in each shell represent the lowest SQD energy. The energy levels split into an even and odd
state, but not symmetrically, with decreasing d . For a thick spacer, the energies of the ground
states in all three shells increase above the levels in the SQD, and reach a local maximum at a
certain value of d = d0, called the coupling length, where the electron wavefunctions of the
two dots start to overlap considerably, and therefore suppress the influence of the strain. A
similar behaviour was demonstrated too in the QDMs of pyramid-shaped quantum dots [15],
and for the vertical periodic arrangement of quantum dots [16]. But the physical explanation
for this asymmetric behaviour was not provided in [15] and [16]. We find that d0 depends on
both le and h, but its value is in the range from 4 to 5 nm. Such small values indicate that
quantum mechanical coupling in symmetrical self-assembled InP/InGaP QDMs is ineffective
due to strain, except for rather small distances between the dots.

One may a priori infer that, similar to the case for electrons, the highest energy vb state
is produced by fh for which at least a single vb basis state has zero orbital momentum. This is
possible in the S±

±3/2 and S±
±1/2 states, where the heavy holes and the light holes have zero orbital

momentum, respectively. The ground state energies of these two symmetries were found to
cross in the case of a SQD [5], as a function of the dot thickness, which is a consequence of
the varying strain fields. A similar effect may occur in quantum-dot molecules, where the hh
and lh effective potentials show opposite trends with the spacer thickness (see figure 3). This
is demonstrated in figure 5 where crossings between states of the same parity and different
angular momenta do indeed occur in the QDM, and are accompanied by crossings between
states of the same angular momentum and different parity. The coupling in the 1S±

+3/2 states is
established by the light holes, which become less confined as d decreases, yet, as figure 3(b)
shows, even for d = 15 nm there is still a well sufficiently deep to localize the light holes.

The hole spatial localization depends on the spacer thickness. For large d , the energies
of the 1S±

+1/2 and 1S±
+3/2 states increase when the spacer thickness decreases, which we refer

to as regime I. After the maxima of the energies shown in figures 5(a) and (b) are reached,
the hole localization enters regime II, where the confinement of the light holes in the spacer
suppresses the confinement of the heavy holes inside the dots. The highest energy vb states
of different angular momenta are close to each other in this range of d , and a situation arises
where it is favourable for the 1P−

+5/2 state to become the ground state of the system, as shown in
figures 5(c) and (d). Near d = 3 nm most of the anticrossings take place; these are followed by
a considerable reconstruction of the hole wavefunctions, mainly from the spacer to the effective
quantum dots for the light holes in the matrix. For spacers thinner than approximately 3 nm,
all energy levels shown in figure 5 increase when d decreases, which we call regime III of hole
localization, marked by a near degeneracy of states in the doublets. We noticed parity reversal
in the ground state in this region.

The hole spectrum shown in figure 5 appears rather unusual and therefore we give in
figure 6 a hand-waving picture to explain the dependence on d of the hole energies. The small
d behaviour is due to the localization of the light holes in regions above and below the QDM.
The vb energy decreases with increasing d because of a decrease of the confining potential
(see figure 3(b)). There is a second branch which for small to intermediate values of d has
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Figure 4. The spacer thickness dependence of the lowest electron energy doublets in the s, p, and
d shells, for three quantum-dot thicknesses: (a) h = 2 nm, (b) h = 3 nm, and (c) h = 4 nm.
The solid curves indicate even electron states, while the dashed curves are for the odd states. For
thick spacers, strain suppresses electron coupling, which brings about upward shifts of the ground
electron energy levels. The values of the coupling length are indicated by arrows. The continuum
of the states in the QDM is shown by the shaded areas in the uppermost parts of the figures, and
the same energy scale is adopted for all three values of h.

the opposite dependence on d . This state is mainly composed of the light holes localized
between the two quantum dots; therefore their ground state energy increases (for the energy
axis pointing upwards) with increasing d . Beyond a certain value of d the lowering of the
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Figure 5. The hole energy levels in the QDM as a function of the spacer thickness: (a) S+3/2,
(b) S+1/2, and (c) the highest energy vb states of S+1/2, S+3/2, and P+5/2 symmetry. Solid curves
indicate even hole states, and the dashed curves the odd hole levels. No two levels of the same
parity cross. The energies in the SQD are shown by the appropriate curves in the shaded area. The
ground state of the holes is denoted by solid dots (•) if it is even, and by open circles (◦) if it is
odd. (d) The z projection of the hole angular momentum in the ground state as it varies with the
spacer thickness. The approximate borders between different regimes of the hole localization in the
1S−

+3/2 and 1S−
+1/2 vb states are indicated by the vertical dotted lines and are explicitly numbered.

The ground SQD hole states are labelled on the right of the grey areas. The dot thickness equals
3 nm.

confining potential for the light holes between the dots starts to dominate, which leads to a
lowering of the lh energy. The transition between these two levels leads to the anticrossings
seen in figure 5 around 3 nm. This explanation is best suited for the 1S±

+1/2 states, where
lh2 = 0, and may also be used to explain the dependence of the 1S±

+3/2 states for d less than
about 10 nm. The lower energy vb levels in figure 5 vary similarly with d; therefore they can
be approximately understood as excited versions of the previous ones.

In order to study the energy spectra of the holes more closely, we show in figure 7 the
PDs of the 1S±

+3/2 and 2S±
+3/2 states for 3 nm thick quantum dots as they vary with the spacer
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Figure 6. A schematic view of the dependence of the light hole localization in the QDM on the
dot separation.

Figure 7. The contour plots of the PD distributions of the four S+3/2 hole states as a function of
the spacer thickness for h = 3 nm and five different values of the separation between the dots:
(a) 1S+

+3/2, (b) 1S−
+3/2, (c) 2S+

+3/2, and (d) 2S−
+3/2 hole state. The thick horizontal line is used to

visually separate the two doublets. The quantum dots are shown by the dashed lines. 1S+
+3/2 and

1S−
+3/2 states form a doublet stemming from the 1S+

+3/2 SQD state, whose PD is shown separately
to the right of the panels (a) and (b). The same also applies to the states shown in the panels (c)
and (d), which arise from splitting of the 1S−

+3/2 SQD state shown to the right of the panels (c)
and (d). GS indicates that the state is the ground state of the holes.

thickness. The regions of higher PD are shown darker, the spacer thickness is indicated on the
top of each column of plots, and the borders of the two dots are shown by the dashed lines.
The 1S+

+3/2 SQD state splits into the 1S+
+3/2 and 1S−

+3/2 QDM states, and the 1S−
+3/2 SQD state
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splits into the 2S+
+3/2 and 2S−

+3/2 states in the QDM. The values of d in the figure are chosen to
illustrate hole coupling in different regimes.

Let us follow the evolution of the hole wavefunction in detail:

(i) In regime III of the hole localization (for d � 3 nm), it is not possible to appreciably
confine the light holes in the spacer region, as shown in figures 7(a)–(d). Therefore, the
nS+

+3/2 and nS−
+3/2 states have similar PD distributions.

(ii) The increase of the spacer thickness to 3 nm diminishes the lh clouds in the matrix above
and below the stack, and brings the light holes towards the spacer region.

(iii) When d increases from 3 to 6 nm, the 1S+
+3/2 and 2S+

+3/2 states anticross, which brings the
lh clouds in the 1S+

+3/2 state towards the spacer region, while the hh clouds, located inside
the dots, are transferred to the 2S+

+3/2 state for d = 6 nm.
(iv) As figure 5(a) shows, the 1S+

+3/2 and 2S+
+3/2 states anticross for the second time near d = 8.8

nm, which brings back the hh-dominated clouds to the 1S+
+3/2 state and the lh-dominated

cloud to the 2S+
+3/2 state.

(v) The 1S−
+3/2 and 2S−

+3/2 states anticross for the second time near d = 12 nm, which yields
exchange of their clouds; thus the ground hole state has S−

+3/2 symmetry and appears to
be dominated by the heavy holes for d = 15 nm.

(vi) For thick spacer, the 2S+
+3/2 and 2S−

+3/2 states converge to the 1S−
+3/2 SQD states, which

consist mainly of the even lh clouds around the two dots, and the odd hh clouds located
inside the dots.

Similar PD plots for the S+1/2 hole states, are depicted in figure 8. The two hh envelope
functions are always separated by |	lh| = 3; therefore the hh parts cannot a priori be large
in the fh = 1/2 state, while for the light holes lh2 = 0 and lh5 = 1. Thus the PD might be
composed of comparable ring-shaped and elliptically shaped clouds.

We describe the localization of the S±
±1/2 holes along the same route as for the S±

±3/2 states:

(i) On comparison with the fh = 3/2 states, a similar location of the holes along the z
direction is found for spacers as thin as d = 1 nm, where the hole PD is dominated by the
lh clouds located in the matrix.

(ii) Increase of d leads to anticrossing between the 1S+
+1/2 and 2S+

+1/2 states in the range
3 nm < d < 4 nm (see figure 5(b)), which provides an exchange of their clouds.

(iii) For d = 6 nm, both the 1S+
+1/2 and 1S−

+1/2 states are located mainly between the dots, but
for the latter the lh envelope function with the zero orbital momentum is s-like and even;
hence its energy exceeds the energy of the former.

(iv) For 6 nm < d < 10 nm, no anticrossing between the 1S+
+1/2 and 2S+

+1/2 states takes place.
In this range, the PD distribution in the 1S+

+1/2 state is dominated by light holes.
(v) Further increase of d from 10 to 15 nm leads to an anticrossing between the 1S+

+1/2
and 2S+

+1/2 levels (see figure 5(b)), which splits the hole clouds into independent ones
surrounding the two dots.

(vi) Let us briefly comment on the PD in the SQD 1S−
+1/2 state. It consists of the s symmetric

lh clouds outside the dot, the p-like hh cloud inside the dot, and a small s-type so cloud
(located around the centre of the dot), which originates from the mixing between the lh
and so bands.

We can quantify the hole localization by calculating the relative contributions of the
different hole bands to the total hole probability, which are plotted in figures 9(a)–(c) for the
1S±

+3/2, 1S±
+1/2, and 1P±

+5/2 states, respectively. For the fh = 3/2 states, we find that the different
regimes for the hole localization are clearly visible in figure 9(a). The lh contributes over a wide
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Figure 8. The same as figure 7 but now for the S+1/2 hole states: (a) 1S+
+1/2, (b) 1S−

+1/2, (c) 2S+
+1/2,

and (d) 2S−
+1/2 states. The hole clouds in the SQD 1S+

+1/2 and 1S−
+1/2 states which lead to the states

in the QDM are displayed to the right of the main panels. The ground state is indicated by GS in
the figures and the quantum dots are shown by the dashed lines.

range of values of d for the 1S+3/2 states of both parities, but due to the enhanced confinement
of the heavy holes when d increases, the hh and lh parts in the 1S+

+3/2 and 1S−
+3/2 states cross

at about d = 8.8 nm and near d = 12 nm, respectively. Therefore, these are dominantly hh
in character for thick spacers. To the left of the hh–lh crossings in figure 9(a), there occur
spikes at d = 3.25 nm, where anticrossings with other states of the same parity reconstruct
the hole wavefunctions. The locations of the spikes effectively mark the borderline between
regimes I and II of hole localization in the two S+3/2 states. Similar abrupt variation, related
to anticrossings near d ≈ 3 nm, of the hh and lh parts is found in figures 9(b) and (c), where
the results for the 1S±

+1/2 and 1P±
+5/2 states are shown. While the locations of the crossings

between hh and lh parts are similar for the 1P±
+5/2 states, the light holes in the S±

+1/2 state are
found to dominate over a much wider range of values of d than for the 1S±

+3/2 states.

4.3. Exciton states and oscillator strength

The ground exciton state in a SQD is provided by the 1Q+
1 quartet. Quite generally, and

similarly to the electron case (see figure 4), exciton energies exceed the SQD energies for
large d (see figure 10), but the increase with decreasing d is larger and persists to lower d as
compared to the electron spectra case. This implies that the behaviour of the exciton states is
strongly influenced by the holes. All exciton levels exhibit doublet ordering, and, as a result of
the strong anticrossings with the higher exciton states, sharper maxima in the exciton energies
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Figure 9. The contributions of the hh, lh, and so bands to the total probability in the QDM states
as a function of the distance between the dots for: (a) 1S±

+3/2, (b) 1S±
+1/2, and (c) 1P±

+5/2 states. The
thick (thin) solid curves denote the hh part in the even (odd) state. The lh parts in the even (odd)
states are shown by the thick (thin) dashed curves. The thick (thin) dotted curves indicate the so
part in the even (odd) state. In the shaded regions, the highest energy vb state of the respective fh
is the ground hole state. The horizontal lines in the areas to the right of the main figures are the
values in the SQD. The two quantum dots in the stack are 3 nm thick.

of the ground states versus d are found for the 3 and 4 nm thick quantum dots than for h = 2 nm
(see figure 10). Besides this, the exciton energies versus d oscillate for h = 3 and 4 nm, while
the 1Q±

1 energies decrease rapidly for h = 2 nm and d > 2 nm; i.e. the ground exciton state
splitting depends on d like in the antibonding state case in the strain-free system. The strain
lifts the energies above the level in the SQD when d increases, and the convergence towards
the values in the single quantum dot depends on the quantum-dot thickness. For d = 15 nm
all states are close to the lowest SQD energies of the Q+

1 and Q+
2 symmetry, displayed as the

horizontal lines in the grey areas to the right of figure 10.
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Figure 10. Energies of the 1Q±
1 and 1Q±

2 exciton quartets in QDMs, computed for h = 2, 3, and
4 nm, as they vary with d. Solid curves, thick dashed curves, dotted curves, and thin dashed curves
denote the energies of the 1Q+

1 , 1Q+
2 , 1Q−

1 , and 1Q−
2 quartets, respectively. The corresponding

values for the SQD are displayed in the shaded region.

Figure 11. The two-dimensional probability density (2DPD), defined in equation (9), for the
exciton quartets: (a) 1Q+

1 and (b) 1Q−
2 , for h = 3 nm and d = 1, 3, 6, 10, and 15 nm. The

corresponding distributions of 2DPD in the SQD excitons are shown to the right of each panel. The
boundaries of the two dots are indicated by the dashed lines.

The contour plots of the exciton 2DPD shown in figure 11 shed more light on the exciton
coupling in the QDM. Because of the Kramers degeneracy, the 2DPDs of the four states are
equally distributed in each quartet. We show in figure 11 the 2DPD of the optically active 1Q+

1
and 1Q−

2 quartets, for the same five values of d as selected previously for the holes, i.e. for
d = 1, 3, 6, 10, and 15 nm, and also the exciton clouds in the SQD to the right of each panel.
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Figure 12. Relative contributions of the different hole bands to the total probability in the optically
active QDM exciton quartets: (a) 1Q+

1 and (b) 1Q−
2 , as a function of the spacer thickness. The

solid curves indicate the hh parts, the dashed lines the lh parts, and the so parts are indicated by the
dotted curves. The results for the SQD are shown by the appropriate lines in the grey areas to the
right of each figure. The dot thickness is 3 nm.

In contrast to the hole states, the exciton 2DPDs do not change tremendously from left to right
in figure 11, yet they exhibit a few interesting aspects:

(i) The spatial extent of 2DPDs for both exciton quartets is reduced with respect to the single-
particle state case.

(ii) Like for the holes, the exciton clouds for thin spacers are located near the base of the stack.
(iii) On separating the two quantum dots, the 2DPDs of both states are relocated to the spacer.
(iv) The peaks of the 1Q+

1 2DPD are located on the z axis, and their localization in the dots
indicates that they are mostly hh-like for thick spacers, while the contribution of the light
holes located outside the dots is larger for thin spacers.

(v) The 2DPD of the 1Q−
2 quartet has a ring configuration for d = 15 nm, with the peaks

located inside the dots.
(vi) The 2DPDs for both quartets are for d = 15 nm already converged to the case for uncoupled

dots in the stack. One should note here that the 1Q−
2 quartet originates from the 1Q+

2 SQD
states.

Parts of the lowest energy exciton states which belong to the different bands vary
considerably with the thickness of the spacer, as figures 12(a) and (b) show for the 1Q+

1
and 1Q−

2 exciton quartets, which exhibit the largest optical activity for x(y) and z polarized
light, respectively. In accordance with the composition of the hole states in the SQD, the heavy
holes give the largest contribution in both exciton quartets depicted in figure 12, whereas lh
and so parts contribute much less. Thinning the spacer increases the mixing of the lh and so
bands in the 1Q+

1 exciton states. The transition from the hh-dominated to the lh-dominated
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Figure 13. (a) The oscillator strength for x (y) polarized light and the 1Q+
1 quartet in the QDM

composed of 3 nm thick quantum dots. The result for two SQDs is shown by the dashed line. The
two insets show the 2DPD distributions for d = 2.5 and 2.75 nm. (b) The oscillator strength for
z polarized light and the 1Q−

2 quartet. The decrease of the oscillator strength is caused by the
redistribution of the exciton 2DPD, as displayed in the insets. The ranges where the displayed
quartets are the ground exciton state are shown by the circles (◦).

exciton states takes place in region II of the hole localization, where the hole wavefunctions
relocate from the spacer to the matrix, which affects the exciton states (see figure 11).

The oscillator strength also exhibits a strong variation with d , as depicted in figure 13(a)
for the 1Q+

1 exciton quartet and x (or y) polarized light, and figure 13(b) for the 1Q−
2 exciton

quartet and z polarized light. The 1Q−
2 quartet also exhibits optical activity for x (or y) polarized

light, but the peak of its oscillator strength is two orders of magnitude lower as compared to
the 1Q+

1 quartet one, and therefore it is not shown in figure 13(a). Equations (15a)–(15f ) show
that the oscillator strength for x and y polarized light depends on the envelope functions for
all three valence bands, while for z polarized light non-zero weight is given only to the lh and
so bands. As shown in the grey areas of figure 12, the hh-dominated composition of the SQD
states offers favourable conditions for the transitions induced by x (y) polarized light, while
rather low lh and so parts reduce the oscillator strength for z polarized light. Hence, different
values of the oscillator strength for the two quartets are found for the thick spacers. When
the two dots in the molecule are far from each other, they behave as independent quantum
systems; therefore the oscillator strength in figure 13(a) tends to twice the SQD result with
increasing d , which is also the case for the 1Q−

2 quartet, but the value in the SQD is rather
low. Due to the increase of the lh part, the oscillator strength for the 1Q+

1 state decreases
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smoothly when the spacer becomes thinner. Decrease of the relevant hh envelope function for
the spin up excitons due to anticrossings with the 2Q+

1 quartet, however, abruptly depletes the
oscillator strength in the range 3 nm < d < 4 nm. The insets in figure 13 show a relationship
between the decrease of the oscillator strength and the change of the 2DPD distribution. For
the 1Q−

2 exciton quartet shown in figure 13(b), no abrupt variation of the oscillator strength for
z polarized light is found, yet the selection rule and the variation of the different parts cleave the
oscillator strength into two parts. Because of the smaller lh and so parts, an oscillator strength
in the peaks an order of magnitude lower is computed for the 1Q−

2 state and z polarized light,
as compared with that for the 1Q+

1 state and x (y) polarized light. However, both exciton
quartets analysed are the ground state of the system in restricted ranges of d , as indicated by
the circles in figure 13.

5. Conclusion

The exciton states and the oscillator strength in quantum-dot molecules composed of two
InP/InGaP quantum discs were computed as a function of the thickness of the InGaP spacer.
We assumed that the two dots had the same size, and numerical calculations were performed
for a few values of the disc thickness. Our results showed that the ground state energies in
the different electron shells of the QDM increase to above the energy in the single quantum
dot. A similar behaviour was found for the holes, but band mixing becomes more effective on
relocating holes from the spacer to the dots, and consequently the hole energy levels exhibit
more extrema with varying d . Our results demonstrate type-I localization for the heavy holes,
and type-II localization for the light holes. The light holes are mainly responsible for the
coupling of the hole states. For a thin spacer, the light holes relocate to the large regions in
the matrix, which pairs the energy levels in doublets in a much more effective way than for
large spacer thicknesses. The peculiar behaviour of the hole states affects the exciton energies,
which exhibit blue shifts with respect to the energy in a single quantum dot. Also, the exciton
energies are found to oscillate when d varies, which is a result of the strong variation of the
hole energy levels when d varies. The oscillator strength for exciton recombination is subject
to strong variations with the distance between the dots. As a matter of fact, due to the decrease
of the hh parts in the 1Q+

1 exciton quartet, which shows the largest optical activity among all
exciton states explored, the oscillator strength for x (or y) polarized light almost vanishes in
a certain range of d . This change effectively causes the bright exciton of the single quantum
dot to revert to being a dark exciton in the quantum-dot molecule.
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